
Reasoning with Probabilistic Logic Programming
Languages

Fabrizio Riguzzi

Department of Mathematica and Computer Science – University of Ferrara
fabrizio.riguzzi@unife.it

F. Riguzzi (UNIFE) Reasoning with PLL 1 / 67

Outline

Exact inference
Approximate inference
Parameter learning
Structure learning

F. Riguzzi (UNIFE) Reasoning with PLL 2 / 67

Inference for PLP under DS

EVID: compute an unconditional probability P(e), the probability
of evidence (also query in this case).
COND: compute the conditional probability distribution of the
query given the evidence, i.e. compute P(q|e)
MPE or most probable explanation: find the most likely value of all
non-evidence atoms given the evidence, i.e. solving the
optimization problem argmaxq P(q|e)
MAP or maximum a posteriori: find the most likely value of a set of
non-evidence atoms given the evidence, i.e. finding
argmaxq P(q|e). MPE is a special case of MAP where
Q ∪ E = HT .
DISTR: compute the probability distribution or density of the
non-ground arguments of a conjunction of literals q, e.g.,
computing the probability density of X in goal mix(X) of the
Gaussian mixture
F. Riguzzi (UNIFE) Reasoning with PLL 3 / 67

Weight Learning

Given
model: a probabilistic logic model with unknown parameters
data: a set of interpretations

Find the values of the parameters that maximize the probability of
the data given the model
Discriminative learning: maximize the conditional probability of a
set of outputs (e.g. ground instances for a predicate) given a set
of inputs
Alternatively, the data are queries for which we know the
probability: minimize the error in the probability of the queries that
is returned by the model

F. Riguzzi (UNIFE) Reasoning with PLL 4 / 67

Structure Learning

Given
language bias: a specification of the search space
data: a set of interpretations

Find the formulas and the parameters that maximize the likelihood
of the data given the model
Discriminative learning: again maximize the conditional likelihood
of a set of outputs given a set of inputs

F. Riguzzi (UNIFE) Reasoning with PLL 5 / 67

Inference for PLP under DS

Computing the probability of a query (no evidence)
Knowledge compilation:

compile the program to an intermediate representation
Binary Decision Diagrams (BDD) (ProbLog [De Raedt et al. IJCAI07],
cplint [Riguzzi AIIA07,Riguzzi LJIGPL09], PITA [Riguzzi & Swift
ICLP10])
deterministic, Decomposable Negation Normal Form circuit (d-DNNF)
(ProbLog2 [Fierens et al. TPLP15])
Sentential Decision Diagrams

compute the probability by weighted model counting

F. Riguzzi (UNIFE) Reasoning with PLL 6 / 67

Inference for PLP under DS

Bayesian Network based:
Convert to BN
Use BN inference algorithms (CVE [Meert et al. ILP09])

Lifted inference

F. Riguzzi (UNIFE) Reasoning with PLL 7 / 67

Knowledge Compilation

Assign Boolean random variables to the probabilistic rules
Given a query Q, compute its explanations, assignments to the
random variables that are sufficient for entailing the query
Let K be the set of all possible explanations
Build a Boolean formula F (Q)

Build a BDD representing F (Q)

F. Riguzzi (UNIFE) Reasoning with PLL 8 / 67

ProbLog

sneezing(X)← flu(X), flu_sneezing(X).
sneezing(X)← hay_fever(X),hay_fever_sneezing(X).
flu(bob).
hay_fever(bob).
0.7 :: flu_sneezing(X).
0.8 :: hay_fever_sneezing(X).

F. Riguzzi (UNIFE) Reasoning with PLL 9 / 67

Definitions

Composite choice κ: consistent set of atomic choices (Ci , θj , l)
with l ∈ {1,2}
Set of worlds compatible with κ: ωκ = {wσ|κ ⊆ σ}
Explanation κ for a query Q: Q is true in every world of ωκ
A set of composite choices K is covering with respect to Q: every
world w in which Q is true is such that w ∈ ωK where
ωK =

⋃
κ∈K ωκ

Example:

K1 = {{(C1, {X/bob},1)}, {(C2, {X/bob},1)}} (1)

is covering for sneezing(bob).

F. Riguzzi (UNIFE) Reasoning with PLL 10 / 67

Finding Explanations

All explanations for the query are collected
ProbLog: source to source transformation for facts, use of
dynamic database
cplint (PITA): source to source transformation, addition of an
argument to predicates

F. Riguzzi (UNIFE) Reasoning with PLL 11 / 67

Explanation Based Inference Algorithm

K = set of explanations found for Q, the probability of Q is given
by the probability of the formula

fK (X) =
∨
κ∈K

∧
(Ci ,θj ,l)∈κ

(XCiθj = l)

where XCiθj is a random variable whose domain is 1,2 and
P(XCiθj = l) = P0(Ci , l)
Binary domain: we use a Boolean variable Xij to represent
(XCiθj = 1)

Xij represents (XCiθj = 2)

F. Riguzzi (UNIFE) Reasoning with PLL 12 / 67

Example

A set of covering explanations for sneezing(bob) is K = {κ1, κ2}
κ1 = {(C1, {X/bob},1)} κ2 = {(C2, {X/bob},1)}
K = {κ1, κ2}
fK (X) = (XC1{X/bob} = 1) ∨ (XC2{X/bob} = 1).
X11 = (XC1{X/bob} = 1) X21 = (XC2{X/bob} = 1)
fK (X) = X11 ∨ X21.
P(fK (X)) = P(X11 ∨ X21) = P(X11) + P(X21)− P(X11)P(X21)

In order to compute the probability, we must make the
explanations mutually exclusive
[De Raedt at. IJCAI07]: Binary Decision Diagram (BDD)

F. Riguzzi (UNIFE) Reasoning with PLL 13 / 67

Binary Decision Diagrams

A BDD for a function of Boolean variables is a rooted graph that
has one level for each Boolean variable
A node n in a BDD has two children: one corresponding to the 1
value of the variable associated with n and one corresponding the
0 value of the variable
The leaves store either 0 or 1.

X11

X21

1

0

X11 X21

F. Riguzzi (UNIFE) Reasoning with PLL 14 / 67

Binary Decision Diagrams

BDDs can be built by combining simpler BDDs using Boolean
operators
While building BDDs, simplification operations can be applied that
delete or merge nodes
Merging is performed when the diagram contains two identical
sub-diagrams
Deletion is performed when both arcs from a node point to the
same node
A reduced BDD often has a much smaller number of nodes with
respect to the original BDD

F. Riguzzi (UNIFE) Reasoning with PLL 15 / 67

Binary Decision Diagrams

X11

X21

1

0

X11 X21

fK (X) = X11 × f X11
K (X) + X11 × f X11

K (X)

P(fK (X)) = P(X11)P(f X11
K (X)) + (1− P(X11))P(f X11

K (X))

P(fK (X)) = 0.7 · P(f X11
K (X)) + 0.3 · P(f X11

K (X))

F. Riguzzi (UNIFE) Reasoning with PLL 16 / 67

Probability from a BDD

Dynamic programming algorithm [De Raedt et al IJCAI07]
Initialize map p; Call Prob(root)
Function Prob(n)
if p(n) exists, return p(n)
if n is a terminal note

return value(n)
else

prob := Prob(child1(n))× p(v(n)) + Prob(child0(n))× (1− p(v(n)))
Add (n,prob) to p; return prob

F. Riguzzi (UNIFE) Reasoning with PLL 17 / 67

Logic Programs with Annotated Disjunctions

C1 = strong_sneezing(X) : 0.3 ∨moderate_sneezing(X) : 0.5 ← flu(X).
C2 = strong_sneezing(X) : 0.2 ∨moderate_sneezing(X) : 0.6 ← hay_fever(X).
C3 = flu(bob).
C4 = hay_fever(bob).

Distributions over the head of rules
More than two head atoms

F. Riguzzi (UNIFE) Reasoning with PLL 18 / 67

Example

A set of covering explanations for strong_sneezing(bob) is
K = {κ1, κ2}
κ1 = {(C1, {X/bob},1)}
κ2 = {(C2, {X/bob},1)}
X11 = XC1{X/bob}
X21 = XC2{X/bob}
fK (X) = (X11 = 1) ∨ (X21 = 1).
P(fX) = P(X11 = 1) + P(X21 = 1)− P(X11 = 1)P(X21 = 1)

To make the explanations mutually exclusive: Multivalued
Decision Diagram (MDD)

F. Riguzzi (UNIFE) Reasoning with PLL 19 / 67

Multivalued Decision Diagrams

X11

X21

1

0

1

1
2

3
2

3

fK (X) =
∨

l∈|X11|

(X11 = l) ∧ f X11=l
K (X)

P(fK (X)) =
∑

l∈|X11|

P(X11 = l)P(f X11=l
K (X))

fK (X) = (X11 = 1) ∧ f X11=1
K (X) + (X11 = 2) ∧ f X11=2

K (X) + (X11 = 3) ∧ f X11=3
K (X)

fK (X) = 0.3 · P(f X11=1
K (X)) + 0.5 · P(f X11=2

K (X)) + 0.2 · P(f X11=3
K (X))

F. Riguzzi (UNIFE) Reasoning with PLL 20 / 67

Manipulating Multivalued Decision Diagrams

Use an MDD package
Convert to BDD, use a BDD package: BDD packages more
developed, more efficient
Conversion to BDD

Log encoding
Binary splits: more efficient

F. Riguzzi (UNIFE) Reasoning with PLL 21 / 67

Transformation to a Binary Decision Diagram

For a variable Xij having n values, we use n − 1 Boolean variables
Xij1, . . . ,Xijn−1

Xij = l for l = 1, . . .n − 1: Xij1 ∧ Xij2 ∧ . . . ∧ Xijl−1 ∧ Xijl ,

Xij = n: Xij1 ∧ Xij2 ∧ . . . ∧ Xijn−1.

Parameters: P(Xij1) = P(Xij = 1) . . .P(Xijl) =
P(Xij=l)∏l−1

m=1(1−P(Xijm))
.

X111

X211

1

0

X111 X211

F. Riguzzi (UNIFE) Reasoning with PLL 22 / 67

Approximate Inference

Inference problem is #P hard
For large models inference is intractable
Approximate inference

Monte Carlo: draw samples of the truth value of the query
Iterative deepening: gives a lower and an upper bound
Compute only the best k explanations: branch and bound, gives a
lower bound

F. Riguzzi (UNIFE) Reasoning with PLL 23 / 67

Monte Carlo

The disjunctive clause
Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . ,Lm.
is transformed into the set of clauses MC(Cr)
MC(Cr , 1) = H1 ← L1, . . . , Lm, sample_head(n, r ,VC,NH),NH = 1.
. . .
MC(Cr , n) = Hn ← L1, . . . , Lm, sample_head(n, r ,VC,NH),NH = n.

Sample truth value of query Q:

...
(call(Q)-> NT1 is NT+1 ; NT1 =NT),

...

F. Riguzzi (UNIFE) Reasoning with PLL 24 / 67

Inference in DISPONTE

The probability of a query Q can be computed according to the
distribution semantics by first finding the explanations for Q in the
knowledge base
Explanation: subset of axioms of the KB that is sufficient for
entailing Q
All the explanations for Q must be found, corresponding to all
ways of proving Q

F. Riguzzi (UNIFE) Reasoning with PLL 25 / 67

Inference in DISPONTE

Probability of Q → probability of the DNF formula

F (Q) =
∨

e∈EQ

(
∧

Fi∈e

Xi)

where EQ is the set of explanations and Xi is a Boolean random
variable associated to axiom Fi

Binary Decision Diagrams for efficiently computing the probability
of the DNF formula

F. Riguzzi (UNIFE) Reasoning with PLL 26 / 67

Example

E1 = 0.4 :: fluffy : Cat
E2 = 0.3 :: tom : Cat
E3 = 0.6 :: Cat v Pet
∃hasAnimal .Pet v NatureLover
(kevin, fluffy) : hasAnimal
(kevin, tom) : hasAnimal

Q = kevin : NatureLover has two explanations:

{ (E1), (E3) }
{ (E2), (E3) }

P(Q) = 0.4× 0.6× (1− 0.3) + 0.3× 0.6 = 0.348

F. Riguzzi (UNIFE) Reasoning with PLL 27 / 67

BUNDLE

Binary decision diagrams for Uncertain reasoNing on Description
Logic thEories [Riguzzi et al. SWJ15]
BUNDLE performs inference over DISPONTE knowledge bases.
It exploits an underlying ontology reasoner able to return all
explanations for a query, such as Pellet [Sirin et al, WS 2007]
Then DNF formula built and converted to BDDs for computing the
probability

F. Riguzzi (UNIFE) Reasoning with PLL 28 / 67

TRILL

Tableau Reasoner for descrIption Logics in proLog
TRILL implements the tableau algorithm using Prolog
It resolves the axiom pinpointing problem in which we are
interested in the set of explanations that entail a query
It returns the set of the explanations
It can build BDDs encoding the set of explanations and return the
probability

F. Riguzzi (UNIFE) Reasoning with PLL 29 / 67

TRILL

Available online at http://trill-sw.eu/
Pets example
http://trill-sw.eu/example/trill/peoplePets.pl

F. Riguzzi (UNIFE) Reasoning with PLL 30 / 67

http://trill-sw.eu/
http://trill-sw.eu/example/trill/peoplePets.pl

Parameter Learning

Problem: given a set of interpretations, a program, find the
parameters maximizing the likelihood of the interpretations (or of
instances of a target predicate)
The interpretations record the truth value of ground atoms, not of
the choice variables
Unseen data: relative frequency can’t be used

F. Riguzzi (UNIFE) Reasoning with PLL 31 / 67

Parameter Learning

An Expectation-Maximization algorithm must be used:
Expectation step: the distribution of the unseen variables in each
instance is computed given the observed data
Maximization step: new parameters are computed from the
distributions using relative frequency
End when likelihood does not improve anymore

F. Riguzzi (UNIFE) Reasoning with PLL 32 / 67

Parameter Learning

[Thon et al. ECML 2008] proposed an adaptation of EM for CPT-L,
a simplified version of LPADs
The algorithm computes the counts efficiently by repeatedly
traversing the BDDs representing the explanations
[Ishihata et al. ILP 2008] independently proposed a similar
algorithm
LFI-PROBLOG [Gutamnn et al. ECML 2011]: EM for ProbLog
EMBLEM [Riguzzi & Bellodi IDA 2013] adapts [Ishihata et al. ILP
2008] to LPADs

F. Riguzzi (UNIFE) Reasoning with PLL 33 / 67

EMBLEM

EM over Bdds for probabilistic Logic programs Efficient Mining
Input: an LPAD; logical interpretations (data); target predicate(s)
All ground atoms in the interpretations for the target predicate(s)
correspond to as many queries
BDDs encode the explanations for each query Q
Expectations computed with two passes over the BDDs

F. Riguzzi (UNIFE) Reasoning with PLL 34 / 67

EDGE

Em over bDds for description loGics paramEter learning
EDGE is inspired to EMBLEM [Bellodi and Riguzzi, IDA 2013]
Takes as input a DL theory and a number of examples that
represent queries.
The queries are concept assertions and are divided into:

1 positive examples;
2 negative examples.

EDGE computes the explanations of each example using
BUNDLE, that builds the corresponding BDD.

For negative examples, EDGE computes the explanations of the
query, builds the BDD and then negates it.

F. Riguzzi (UNIFE) Reasoning with PLL 35 / 67

Structure Learning for LPADs

Given a trivial LPAD or an empty one, a set of interpretations
(data)
Find the model and the parameters that maximize the probability
of the data (log-likelihood)
SLIPCOVER: Structure LearnIng of Probabilistic logic program by
searching OVER the clause space EMBLEM [Riguzzi & Bellodi
TPLP 2015]

1 Beam search in the space of clauses to find the promising ones
2 Greedy search in the space of probabilistic programs guided by the

LL of the data.

Parameter learning by means of EMBLEM

F. Riguzzi (UNIFE) Reasoning with PLL 36 / 67

SLIPCOVER

Cycle on the set of predicates that can appear in the head of
clauses, either target or background
For each predicate, beam search in the space of clauses
The initial set of beams is generated by building a set of bottom
clauses as in Progol [Muggleton NGC 1995]

F. Riguzzi (UNIFE) Reasoning with PLL 37 / 67

Mode Declarations

Syntax

modeh(RecallNumber,PredicateMode).
modeb(RecallNumber,PredicateMode).

RecallNumber can be a number or *. Usually *. Maximum
number of answers to queries to include in the bottom clause
PredicateMode: template of the form:

p(ModeType, ModeType,...)

F. Riguzzi (UNIFE) Reasoning with PLL 38 / 67

Mode Declarations

ModeType can be:
Simple:

+T input variables of type T;
-T output variables of type T; or
#T, -#T constants of type T.

Structured: of the form f(..) where f is a function symbol and
every argument can be either simple or structured.

F. Riguzzi (UNIFE) Reasoning with PLL 39 / 67

Mode Declarations

Some examples:

modeb(1,mem(+number,+list)).
modeb(1,dec(+integer,-integer)).
modeb(1,mult(+integer,+integer,-integer)).
modeb(1,plus(+integer,+integer,-integer)).
modeb(1,(+integer)=(#integer)).
modeb(*,has_car(+train,-car))
modeb(1,mem(+number,[+number|+list])).

F. Riguzzi (UNIFE) Reasoning with PLL 40 / 67

Bottom Clause ⊥

Most specific clause covering an example e
Form: e← B
B: set of ground literals that are true regarding the example e
B obtained by considering the constants in e and querying the
predicates of the background for true atoms regarding these
constants
A map from types to lists of constants is kept, it is enlarged with
constants in the answers to the queries and the procedure is
iterated a user-defined number of times
Values for output arguments are used as input arguments for
other predicates

F. Riguzzi (UNIFE) Reasoning with PLL 41 / 67

Bottom Clause ⊥

Initialize to empty a map m from types to lists of values
Pick a modeh(r , s), an example e matching s, add to m(T) the
values of +T arguments in e
For i = 1 to d

For each modeb(r , s)

F. Riguzzi (UNIFE) Reasoning with PLL 42 / 67

Bottom Clause ⊥

For each possible way of building a query q from s by replacing
+T and #T arguments with constants from m(T) and all other
arguments with variables

Find all possible answers for q and put them in a list L
L′ := r elements sampled from L
For each l ∈ L′, add the values in l corresponding to −T or −#T to
m(T)

F. Riguzzi (UNIFE) Reasoning with PLL 43 / 67

Bottom Clause ⊥

Example:

e = father(john,mary)
B = {parent(john,mary),parent(david , steve),
parent(kathy ,mary), female(kathy),male(john),male(david)}
modeh(father(+person,+person)).
modeb(parent(+person,−person)).
modeb(parent(−#person,+person)).
modeb(male(+person)). modeb(female(#person)).
e← B = father(john,mary)← parent(john,mary),male(john),
parent(kathy ,mary), female(kathy).

F. Riguzzi (UNIFE) Reasoning with PLL 44 / 67

Bottom Clause ⊥

The resulting ground clause ⊥ is then processed by replacing
each term in a + or - placemarker with a variable
An input variable (+T) must appear as an output variable with the
same type in a previous literal and a constant (#T or -#T) is not
replaced by a variable.

⊥ = father(X ,Y)←
parent(X ,Y),male(X),parent(kathy ,Y), female(kathy).

F. Riguzzi (UNIFE) Reasoning with PLL 45 / 67

SLIPCOVER

The initial beam associated with predicate P/Ar will contain the
clause with the empty body h : 0.5. for each bottom clause
h :− b1, . . . ,bm

In each iteration of the cycle over predicates, it performs a beam
search in the space of clauses for the predicate.
The beam contains couples (Cl ,LIterals) where
Literals = {b1, . . . ,bm}
For each clause Cl of the form Head :− Body , the refinements
are computed by adding a literal from Literals to the body.

F. Riguzzi (UNIFE) Reasoning with PLL 46 / 67

SLIPCOVER

The tuple (Cl ′, Literals′) indicates a refined clause Cl ′ together
with the new set Literals′

EMBLEM is then executed for a theory composed of the single
refined clause.
LL is used as the score of the updated clause (Cl ′′,Literals′).
(Cl ′′,Literals′) is then inserted into a list of promising clauses.
Two lists are used, TC for target predicates and BC for
background predicates.
These lists ave a maximum size

F. Riguzzi (UNIFE) Reasoning with PLL 47 / 67

SLIPCOVER

After the clause search phase, SLIPCOVER performs a greedy
search in the space of theories:

it starts with an empty theory and adds a target clause at a time
from the list TC.
After each addition, it runs EMBLEM and computes the LL of the
data as the score of the resulting theory.
If the score is better than the current best, the clause is kept in the
theory, otherwise it is discarded.

Finally, SLIPCOVER adds all the clauses in BC to the theory and
performs parameter learning on the resulting theory.

F. Riguzzi (UNIFE) Reasoning with PLL 48 / 67

Experiments - Area Under the PR Curve

System HIV UW-CSE Mondial
SLIPCOVER 0.82± 0.05 0.11± 0.08 0.86± 0.07
SLIPCASE 0.78± 0.05 0.03± 0.01 0.65± 0.06
LSM 0.37± 0.03 0.07± 0.02 -
ALEPH++ - 0.05± 0.01 0.87± 0.07
RDN-B 0.28± 0.06 0.28± 0.06 0.77± 0.07
MLN-BT 0.29± 0.04 0.18± 0.07 0.74± 0.10
MLN-BC 0.51± 0.04 0.06± 0.01 0.59± 0.09
BUSL 0.38± 0.03 0.01± 0.01 -

F. Riguzzi (UNIFE) Reasoning with PLL 49 / 67

Experiments - Area Under the PR Curve

System Carcinogenesis Mutagenesis Hepatitis
SLIPCOVER 0.60 0.95± 0.01 0.80± 0.01
SLIPCASE 0.63 0.92± 0.08 0.71± 0.05
LSM - - 0.53± 0.04
ALEPH++ 0.74 0.95± 0.01 -
RDN-B 0.55 0.97± 0.03 0.88± 0.01
MLN-BT 0.50 0.92± 0.09 0.78± 0.02
MLN-BC 0.62 0.69± 0.20 0.79± 0.02
BUSL - - 0.51± 0.03

F. Riguzzi (UNIFE) Reasoning with PLL 50 / 67

Bongard Problems

Introduced by the Russian scientist M. Bongard
Pictures, some positive and some negative
Problem: discriminate between the two classes.
The pictures contain shapes with different properties, such as
small, large, pointing down, . . . and different relationships
between them, such as inside, above, . . .

F. Riguzzi (UNIFE) Reasoning with PLL 51 / 67

Input File

http://cplint.eu/e/bongard.pl

:- use_module(library(slipcover)).
:- if(current_predicate(use_rendering/1)).
:- use_rendering(c3).
:- use_rendering(lpad).
:- endif.
:-sc.
:- set_sc(megaex_bottom,20).
:- set_sc(max_iter,3).
:- set_sc(max_iter_structure,10).
:- set_sc(maxdepth_var,4).
:- set_sc(verbosity,1).

See http://cplint.eu/help/help-cplint.html for a list of
options

F. Riguzzi (UNIFE) Reasoning with PLL 52 / 67

http://cplint.eu/e/bongard.pl
http://cplint.eu/help/help-cplint.html

Input File

Theory for parameter learning and background

bg([]).
in([
(pos:0.5 :-
circle(A),
in(B,A)),

(pos:0.5 :-
circle(A),
triangle(B))]).

F. Riguzzi (UNIFE) Reasoning with PLL 53 / 67

Input File
Data: two formats, models

begin(model(2)).
pos.
triangle(o5).
config(o5,up).
square(o4).
in(o4,o5).
circle(o3).
triangle(o2).
config(o2,up).
in(o2,o3).
triangle(o1).
config(o1,up).
end(model(2)).

begin(model(3)).
neg(pos).
circle(o4).
circle(o3).
in(o3,o4).
....

F. Riguzzi (UNIFE) Reasoning with PLL 54 / 67

Input File
Data: two formats, keys (internal representation)

pos(2).
triangle(2,o5).
config(2,o5,up).
square(2,o4).
in(2,o4,o5).
circle(2,o3).
triangle(2,o2).
config(2,o2,up).
in(2,o2,o3).
triangle(2,o1).
config(2,o1,up).

neg(pos(3)).
circle(3,o4).
circle(3,o3).
in(3,o3,o4).
square(3,o2).
circle(3,o1).
in(3,o1,o2).
....

F. Riguzzi (UNIFE) Reasoning with PLL 55 / 67

Input File

Folds
Target predicates: output(<predicate>)
Input predicates are those whose atoms you are not interested in
predicting
input_cw(<predicate>/<arity>).

True atoms are those in the interpretations and those derivable
from them using the background knowledge
Open world input predicates are declared with
input(<predicate>/<arity>).

the facts in the interpretations, the background clauses and the
clauses of the input program are used to derive atoms

F. Riguzzi (UNIFE) Reasoning with PLL 56 / 67

Input File

fold(train,[2,3,5,...]).
fold(test,[490,491,494,...]).
output(pos/0).
input_cw(triangle/1).
input_cw(square/1).
input_cw(circle/1).
input_cw(in/2).
input_cw(config/2).

F. Riguzzi (UNIFE) Reasoning with PLL 57 / 67

Input File

Language bias
determination(p/n,q/m): atoms for q/m can appear in the body
of rules for p/n

determination(pos/0,triangle/1).
determination(pos/0,square/1).
determination(pos/0,circle/1).
determination(pos/0,in/2).
determination(pos/0,config/2).
modeh(*,pos).
modeb(*,triangle(-obj)).
modeb(*,square(-obj)).
modeb(*,circle(-obj)).
modeb(*,in(+obj,-obj)).
modeb(*,in(-obj,+obj)).
modeb(*,config(+obj,-#dir)).

F. Riguzzi (UNIFE) Reasoning with PLL 58 / 67

Input File

Search bias

lookahead(logp(B),[(B=_C)]).

F. Riguzzi (UNIFE) Reasoning with PLL 59 / 67

Bongard Problems

Parameter learning

induce_par([train],P),
test(P,[test],LL,AUCROC,ROC,AUCPR,PR).

Structure learning

induce([train],P),
test(P,[test],LL,AUCROC,ROC,AUCPR,PR).

F. Riguzzi (UNIFE) Reasoning with PLL 60 / 67

Conclusions

Exact inference
Approximate inference
Parameter learning
Structure learning
Research directions:

Structure learning search strategies
Learning hybrid programs
Learning restricted and cheaper
languages

F. Riguzzi (UNIFE) Reasoning with PLL 61 / 67

Resources

Online course on cplint
Moodle https://edu.swi-prolog.org/
Videos of lectures https://www.youtube.com/playlist?
list=PLJPXEH0boeND0UGWJxBRWs7qzzKpC-FkN

ACAI summer school on Statistical Relational AI
http://acai2018.unife.it/

Videos of lectures https://www.youtube.com/playlist?
list=PLJPXEH0boeNDWTNwWTWnVffXi5XwAj1mb

Videos of lecture Probabilistic Inductive Logic Programming
Part 1 https://youtu.be/mLdPGSlgNxU
Part 2 https://youtu.be/DRlOft0Y_Ng

cplint in Playing with Prolog https://www.youtube.com/
playlist?list=PLJPXEH0boeNAik6QnfvGlAGRQxFY_LCE3

F. Riguzzi (UNIFE) Reasoning with PLL 62 / 67

https://edu.swi-prolog.org/
https://www.youtube.com/playlist?list=PLJPXEH0boeND0UGWJxBRWs7qzzKpC-FkN
https://www.youtube.com/playlist?list=PLJPXEH0boeND0UGWJxBRWs7qzzKpC-FkN
http://acai2018.unife.it/
https://www.youtube.com/playlist?list=PLJPXEH0boeNDWTNwWTWnVffXi5XwAj1mb
https://www.youtube.com/playlist?list=PLJPXEH0boeNDWTNwWTWnVffXi5XwAj1mb
https://youtu.be/mLdPGSlgNxU
https://youtu.be/DRlOft0Y_Ng
https://www.youtube.com/playlist?list=PLJPXEH0boeNAik6QnfvGlAGRQxFY_LCE3
https://www.youtube.com/playlist?list=PLJPXEH0boeNAik6QnfvGlAGRQxFY_LCE3

F. Riguzzi (UNIFE) Reasoning with PLL 63 / 67

References

Bellodi, E. and Riguzzi, F. (2012). Learning the structure of
probabilistic logic programs. In Inductive Logic Programming 21st
International Conference, ILP 2011, London, UK, July 31 - August
3, 2011. Revised Papers, volume 7207 of LNCS, pages 61-75,
Heidelberg, Germany. Springer.
Bellodi, E. and Riguzzi, F. (2013). Expectation Maximization over
binary decision diagrams for probabilistic logic programs.
Intelligent Data Analysis, 17(2).
Gutmann, B., Thon, I., and Raedt, L. D. (2011). Learning the
parameters of probabilistic logic programs from interpretations. In
European Conference on Machine Learning and Knowledge
Discovery in Databases, volume 6911 of LNCS, pages 581-596.
Springer.

F. Riguzzi (UNIFE) Reasoning with PLL 64 / 67

References

Muggleton, S. (1995). Inverse entailment and progol. New
Generation Comput., 13(3&4):245-286.
Riguzzi, F. (2007). A top down interpreter for LPAD and CP-logic.
In Congress of the Italian Association for Artificial Intelligence,
number 4733 in LNAI, pages 109-120. Springer.
Riguzzi, F. (2009). Extended semantics and inference for the
Independent Choice Logic. Logic Journal of the IGPL.
Riguzzi, F. and Swift, T. (2010). Tabling and Answer Subsumption
for Reasoning on Logic Programs with Annotated Disjunctions. In
Hermenegildo, M. and Schaub, T., editors, Technical
Communications of the 26th Int’l. Conference on Logic
Programming (ICLP10), volume 7 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 162-171, Dagstuhl,
Germany. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

F. Riguzzi (UNIFE) Reasoning with PLL 65 / 67

References

Sato, T. (1995). A statistical learning method for logic programs
with distribution semantics. In International Conference on Logic
Programming, pages 715-729.
Thon, I., Landwehr, N., and Raedt, L. D. (2008). A simple model
for sequences of relational state descriptions. In Daelemans, W.,
Goethals, B., and Morik, K., editors, Machine Learning and
Knowledge Discovery in Databases, European Conference,
ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008,
Proceedings, Part II, volume 5212 of Lecture Notes in Computer
Science, pages 506-521. Springer.

F. Riguzzi (UNIFE) Reasoning with PLL 66 / 67

